Brief information about the project

Name of the project	AP09058525 «Research and development of the process of
	obtaining high-quality motor fuels from stable gas-
	condensate hydrocarbon raw materials of Kazakhstan»
Relevance	Currently, the problem of removing sulfur from various
	hydrocarbon fractions is becoming more urgent due to the
	deterioration of the quality of the extracted raw materials.
	At the same time, the structure of sulfur compounds differs
	in different hydrocarbon raw materials. It should be noted
	that among the sulfur-containing compounds present in the
	extracted hydrocarbon raw materials, the greatest
	problems arise when the content of mercaptans is high.
	Mercaptans are the most toxic and corrosive compounds
	present in the extracted raw materials. In particular, the
	problem of formation of sulfur-alkaline effluents is also
	associated with the lack of effective solutions for removing
	mercaptans.
Purpose	Research and development of a method for obtaining high-
	quality motor fuels by selective extraction of sulfur-
	containing compounds, such as mercaptans and sulfides
	from stable gas-condensate hydrocarbon raw materials, by
	soft oxidation of these compounds in the presence of
	catalytic systems based on hydrogen peroxide and variable
	metals.
Objectives	1. Obtaining high-quality gasoline fractions from stable
	gas-condensate hydrocarbon raw materials by selective
	oxidation of organosulfur compounds in the presence of
	catalytic systems based on hydrogen peroxide and variable
	metals.
	2. Selective extraction of organosunur compounds from
	desulfurization in the presence of actulation systems based
	on hydrogen perovide and veriable metals
	2 Obtaining the assoline fraction by selective evidetion of
	mercantans and sulfides in a sample of gas condensate in
	the presence of catalytic systems based on hydrogen
	peroxide and variable metals
	4 Conducting a detailed physical and chemical analysis of
	a sample of gas condensate and its distillates including the
	structure and group composition of sulfur-containing
	compounds before and after desulfurization.
	5. Comparative analysis of gasoline fractions obtained
	from initial and pre-desulfurized stable gas condensate.
	Determination of the effect of selective oxidative
	desulfurization on the quality of gas condensate and
	gasoline fraction.
Expected and achieved results	1. Gasoline fractions were obtained from stable gas
-	condensate hydrocarbon raw materials by selective
	oxidation of organosulfur compounds in the presence of
	catalytic systems based on hydrogen peroxide and
	peroxocomplexes based on sodium molybdate (Na ₂ MoO ₄ ·

	H_{0} at a temperature of 60° C. Total sulfur content
	H_2O) at a temperature of 60 C. Total summer content
	decreased by 89.9% from 4880 ppm to 490 ppm.
	2. A method for oxidizing sulfur-containing compounds in
	gas condensate has been developed and the influence of
	various factors (various salts of transition metals, such as
	$Na_2MoO_4 \cdot H_2O$, NH_4VO_3 and $Na_2WO_4 \cdot 2H_2O$, process
	temperature 20;40;60;80 ^o C, concentration of hydrogen
	peroxide to sulfur 2:1; 4:1; 6:1) on the process of oxidative
	desulfurization of gas condensate hydrocarbon raw
	materials has been studied. The optimal conditions of the
	gas condensate oxidation process (4 h, 60°C, Me=Mo,
	molar ratio Mo: $S = 1:100$ and H_2O_2 : $S = 4:1$) were
	selected.
	3. Effective methods for extracting oxidation products of
	sulfur-containing compounds by extraction - N-N- DMF
	and adsorption – silica gel ASCG are proposed. As a result.
	the total sulfur content decreased by 91% from 7540 ppm
	to 680 ppm. According to the results of elemental analysis
	it was proved that after the oxidation process of gas
	condensate oxidation products such as sulfones and
	sulfoxides are adsorbed 2 times more on silica gel from
	0.7% to 1.8%
	4 It was shown for the first time that by oxidation with
	subsequent rectification of gas condensate it is possible to
	obtain a gasoline fraction with an ultra-low sulfur content
	of 9 ppm corresponding to the Euro-5 standard
Research team members with	1. Muktaly Dinara Scopus author ID: 557195522581. ORCID
their identifiers (Scopus Author	ID: https://orcid.org/0000-0002-1139-5488.
ID. Researcher ID. ORCID if	2. Myltykbayeva Zhannur Kadenovna Scopus author ID:
available) and links to relevant	55911449500. ORCID ID: https://orcid.org/0000-0003-4336-
profiles	<u>3920</u> .
promos	3. Akopyan Argam Vilikovich ORCID: https://orcid.org/0000-
	0001-6386-0006
	4. Seisembekova Anar Bauyrzhanovna Researcher ID: U-
	4202-2017, OKCID. 0000-0002-7791-3143, Scopus Aution
	5 Malaev Aldivar ORCID ID: https://orcid.org/0009-0004-
	6906-5037
	6. Smaiyl Madi Bekezhanuly ORCID: https://orcid.org/0000-
	0001- 8170-1367
List of publications with links to	1. Muktaly D., Myltykbaeva Zh.K., Smaiyl M.B. Peroxide
them	oxidative desulfurization of gasoline fractions of gas
	condensate. XL International Scientific-Practical
	conference «EurasiaScience». Moscow. 2021. P. 21-22 [in
	English]
	2. Muktaly D., Myltykbaeva Zh.K., Smaiyl M.B.
	Desulfurization of straight-run gasoline fraction of gas
	condensate. XIII International Scientific and Innovative
	Youth Conference. Tambov, 2021. p. 141. [in Russian]
	3. Muktaly D., Myltykbaeva Zh.K., Smaiyl M.B. Study of
	oxidative desulfurization of diesel fuel in the presence of
	cocatalysts. Chemical Journal of Kazakhstan, 2021.
	№4(76). p. 88-96. [in Russian]

	4. D.Muktaly, Zh. K. Myltykbaeva, A.V. Akopyan, M.B.
	Smaiyl, N. Muftieva. Oxidative desulfurization of straight-
	run gasoline fraction of gas condensate of Karachaganak
	field .//Chemical Journal of Kazakhstan. 2022.№ 2,T
	78.P.132-141. [in Russian]
	5. D.Muktaly, Zh. K. Myltykbaeva, A.V. Akopyan, M.B.
	Smaiyl. Peroxide Oxidative Desulfurization of the Gas
	Condensate from Karachaganak Field // Petroleum
	Chemistry, 2022. T 22, №6, P. 1-6. [in Russian]
	6. D. Muktaly, Zh. K. Myltykbaeva, A.V. Akopyan, M. B.
	Smaiyl. Peroxide Oxidative Desulfurization of the Gas
	Condensate from Karachaganak Field // Petroleum
	Chemistry. 2022. P. 1-6. DOI:
	10.1134/S0965544122090080. [in English]
	7. D.Muktaly, Zh. K. Myltykbaeva, Zh.T. Eshova. Method
	of cleaning gas condensate from sulphur compounds.
	Application for the patent of the Republic of Kazakhstan
	for the invention has been filed. [in Russian]
	8. D.Muktaly, A. Akopyan, Zh. Myltykbaeva.,
	Y.Imanbayev. Gasoline Fraction High-Efficient
	Sweetening by Gas Condensate Oxidation and
	Rectification. Processes 2023, 11(10), 3017.
	https://doi.org/10.3390/pr11103017. [in English]
Patents	